lunes, 6 de junio de 2016

ELEMENTOS DE UN CIRCUITO ELECTRICO

 cualquier circuito eléctrico sencillo podemos distinguir diferentes tipos de elementos que cumplen una función determinada y que estudiamos a continuación:

Generadores

Son los elementos encargados de suministrar la energía al circuito, creando una diferencia de potencial entre sus terminales que permite que circule la corriente eléctrica.
 Los elementos que se encargan de esta función son: las pilas, baterías, dinamos y alternadores.

Conductores 

Son materiales que permiten el paso de la corriente eléctrica, por lo que se utilizan como unión entre los distintos elementos del circuito. 
Generalmente son cables formados por hilos de cobre trenzado y recubiertos por un aislante plástico.

Receptores

 Son los componentes que reciben la energía eléctrica y la transforman en otras formas más útiles para nosotros como: movimiento, luz, sonido o calor.
Algunos receptores muy comunes son: las lámparas, motores, estufas, altavoces, electrodomésticos, máquinas, etc.

Elementos de control

Estos elementos nos permiten maniobrar con el circuito conectando y desconectando sus diferentes elementos  según nuestra voluntad.
Los elementos de control más empleados son los interruptores, pulsadores y conmutadores.

Elementos de protección 

Estos elementos tienen la misión de proteger a la instalación y sus usuarios de cualquier avería que los pueda poner en peligro. 
 Los más empleados son los fusibles y los interruptores de protección.






COMO SE GENERA LA CORRIENTE ELECTRICA

¿COMO SE GENERA LA CORRIENTE ELÉCTRICA?

CORRIENTE ELECTRICA

CORRIENTE ELÉCTRICA



 

LA CORRIENTE ELÉCTRICA


Lo que conocemos como corriente eléctrica no es otra cosa que la circulación de cargas o electrones a través de un circuito eléctrico cerrado, que se mueven siempre del polo negativo al polo positivo de la fuente de suministro de fuerza electromotriz (FEM).



En un circuito eléctrico cerrado la.corriente circula siempre del polo.negativo al polo positivo de la.fuente de fuerza electromotriz.(FEM),

Quizás hayamos oído hablar o leído en algún texto que el sentido convencional de circulación de la corriente eléctrica por un circuito es a la inversa, o sea, del polo positivo al negativo de la fuente de FEM. Ese planteamiento tiene su origen en razones históricas y no a cuestiones de la física y se debió a que en la época en que se formuló la teoría que trataba de explicar cómo fluía la corriente eléctrica por los metales, los físicos desconocían la existencia de los electrones o cargas negativas.

Al descubrirse los electrones como parte integrante de los átomos y principal componente de las cargas eléctricas, se descubrió también que las cargas eléctricas que proporciona una fuente de FEM (Fuerza Electromotriz), se mueven del signo negativo (–) hacia el positivo (+), de acuerdo con la ley física de que "cargas distintas se atraen y cargas iguales se rechazan". Debido al desconocimiento en aquellos momentos de la existencia de los electrones, la comunidad científica acordó que, convencionalmente, la corriente eléctrica se movía del polo positivo al negativo, de la misma forma que hubieran podido acordar lo contrario, como realmente ocurre. No obstante en la práctica, ese “error histórico” no influye para nada en lo que al estudio de la corriente eléctrica se refiere.

CONDUCTIVIDAD Y RESISTIVIDAD

CONDUCTIVIDAD Y RESISTIVIDAD
Conductividad eléctrica, aptitud de una sustancia de conducir la corriente eléctrica, los iones cargados positiva y negativamente son los que conducen la corriente, y la cantidad conducida dependerá del número de iones presentes y de su movilidad.

La resistividad es la resistencia eléctrica específica de un determinado material. Se designa por la letra griega rho minúscula (ρ) y se mide en ohm-metro (Ω•m).{\displaystyle \rho =R{S \over l}}en donde {\displaystyle R}  es la resistencia en ohms, {\displaystyle S}  la sección transversal en m² y {\displaystyle l}  la longitud en m. Su valor describe el comportamiento de un material frente al paso de corriente eléctrica: un valor alto de resistividad indica que el material es mal conductor mientras que un valor bajo indica que es un buen conductor.La resistividad es la inversa de la conductividad; por tanto, {\displaystyle \scriptstyle \rho =1/\sigma} . Usualmente, la magnitud de la resistividad (ρ) es la proporcionalidad entre el campo eléctrico {\displaystyle {\mathbf {E}}}  y la densidad de corriente de conducción Como ejemplo, un material de 1 m de largo por 1 m de ancho por 1 m de altura que tenga 1 Ω de resistencia tendrá una resistividad (resistencia específica, coeficiente de resistividad) de 1 Ω•m. la resistividad de los metales aumenta con la temperatura, mientras que la resistividad de los semiconductores disminuye ante el aumento de la temperatura.

POTENCIAL Y TENSIÓN ELECTRICA

POTENCIAL
El potencial eléctrico o potencial electrostático en un punto, es el trabajo que debe realizar un campo electrostático para mover una carga positiva desde dicho punto hasta el punto de referencia,1 dividido por unidad de carga de prueba. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga positiva unitaria q desde el punto de referencia hasta el punto considerado en contra de la fuerza eléctrica a velocidad constante. Matemáticamente se expresa por:

{\displaystyle V={\frac {W}{q}}\,\!}

El potencial eléctrico sólo se puede definir unívocamente para un campo estático producido por cargas que ocupan una región finita del espacio. Para cargas en movimiento debe recurrirse a los potenciales de Liénard-Wiechert para representar un campo electromagnético que además incorpore el efecto de retardo, ya que las perturbaciones del campo eléctrico no se pueden propagar más rápido que la velocidad de la luz.

Si se considera que las cargas están fuera de dicho campo, la carga no cuenta con energía y el potencial eléctrico equivale al trabajo necesario para llevar la carga desde el exterior del campo hasta el punto considerado. La unidad del Sistema Internacional es el voltio (V).


Todos los puntos de un campo eléctrico que tienen el mismo potencial forman una superficie equipotencial. Una forma alternativa de ver al potencial eléctrico es que a diferencia de la energía potencial eléctrica o electrostática, él caracteriza sólo una región del espacio sin tomar en cuenta la carga que se coloca ahí
TENSIÓN ELÉCTRICA
El término tensión, con origen en el latín tensĭo, tiene diferentes acepciones. Por lo general se refiere al estado en el que se encuentra un cuerpo cuando está bajo la influencia de fuerzas que resultan opuestas.
Tensión eléctrica
Eléctrico, por su parte, es aquello vinculado a la electricidad (la propiedad de la materia caracterizada por el rechazo o la atracción entre sus partes de acuerdo a la presencia de protones o electrones).
La idea de tensión eléctrica, de este modo, se asocia a la magnitud que permite indicar la diferencia existente en el potencial eléctrico que se registra entre dos puntos. La tensión eléctrica también se conoce como voltaje, cuya unidad de medida es el voltio.


ELECTROMAGNETISMO

ELECTROMAGNETISMO

Carga eléctrica.
El electromagnetismo es la parte de la electricidad que estudia la relación entre los fenómenos eléctricos y los fenómenos magnéticos. Los fenómenos eléctricos y magnéticos fueron considerados como independientes hasta 1820, cuando su relación fue descubierta por casualidad.

Así, hasta esa fecha el magnetismo y la electricidad había sido tratada como fenómenos distintos y eran estudiados por ciencias diferentes. Sin embargo, esto cambió a partir del descubrimiento que realizó Hans Christian Oersted, observando que la aguja de una brújula variaba su orientación al pasar corriente a través de un conductor próximo a ella. Los estudios de Oersted  sugerían que la electricidad y el magnetismo eran manifestaciones de un mismo fenómeno: las fuerzas magnéticas proceden de las fuerzas originadas entre cargas eléctricas en movimiento.
 El electromagnetismo es la base de funcionamiento de todos los motores eléctricos y generadores 
Autor: Davide Anselmi

FUERZA ENTRE CARGAS

FUERZA ENTRE CARGAS
Los cuerpos cargados se atraen o se repelen según sean las cargas de distinto o del mismo signo, respectivamente. A las fuerzas de atracción o de repulsión se les da el nombre de fuerzas eléctricas electrostáticas.
En la simulación siguiente puedes colocar una carga positiva o negativa en la zona de trabajo,un par de cargas (una positiva y la otra negativa) o bien dos láminas de cargas de distinto signo. Al colocar una carga positiva más o menos cerca de cada sistema de cargas, verás dibujada la fuerza que actúa sobre ella, mayor cuanto más larga sea la flecha que representa la interacción.

CARGA ELECTRICA

CARGA ELÉCTRICA

Los átomos están constituidos por un núcleo y una corteza(órbitas) En el núcleo se encuentran muy firmemente unidos los protones y los neutrones. Los protones tienen carga positiva y los neutrones no tienen carga. Alrededor del núcleo se encuentran las órbitas donde se encuentran girando sobre ellas los electrones. Los electrones tienen carga negativa.Ambas cargas la de los protones(positiva) y la de los electrones(negativa) son iguales, aunque de signo contrario.
La carga eléctrica elemental es la del electrón. El electrón es la partícula elemental que lleva la menor carga eléctrica negativa que se puede aislar. Como la carga de un electrón resulta extremadamente pequeña se toma en el S.I.(Sistema Internacional) para la unidad de Carga eléctrica el Culombio que equivale a 6,24 10E18 electrones.

Para denominar la carga se utiliza la letra Q y para su unidad la C.
Ejemplo: Q = 5 C
En la tabla adjunta se muestra la masa y la carga de las partículas elementales.
Para el estudio de la electricidad nos basta con este modelo aproximado del átomo, con sus partículas elementales(electrón, protón y neutrón). Los protones son de carga eléctrica positiva y se repelen entre sí. Los electrones son de carga eléctrica negativa y se repelen entre sí. Los neutrones no tienen carga eléctrica.
Entre los electrones y los protones se ejercen fuerzas de atracción. Puesto que los electrones giran a gran velocidad alrededor del núcleo existe también una fuerza centrípeta que tiende a alejar del núcleo a los electrones. Entre dichas fuerzas se establece un equilibrio, de tal manera que los electrones giran en las órbitas y no son atraídos por los protones del núcleo y tampoco se salen de sus órbitas.

CAMPO ELÉCTRICO Y MAGNETICO

CAMPO ELÉCTRICO



El campo eléctrico es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica.1 Se describe como un campo vectorial en el cual una carga eléctrica puntual de valor {\displaystyle q}  sufre los efectos de una fuerza eléctrica {\displaystyle \mathbf {F} }  dada por la siguiente ecuación: {\displaystyle \mathbf {F} =q\mathbf {E} }En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.2Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, solo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético. Esta definición general indica que el campo no es directamente medible, sino que lo que es observable es su efecto sobre alguna carga colocada en su seno. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año 1832.La unidad del campo eléctrico en el SI es Newton por Culombio (N/C), Voltio por metro (V/m) o, en unidades básicas, kg·m·s−3·A−1 y la ecuación dimensional es MLT-3I-1.

CAMPO MAGNÉTICO

Los campos magnéticos son producidos por corrientes eléctricas, las cuales pueden ser corrientes macroscópicas en cables, o corrientes microscópicas asociadas con los electrones en órbitas atómicas. El campo magnético B se define en función de la fuerza ejercida sobre las cargas móviles en la ley de la fuerza de Lorenz. La interacción del campo magnético con las cargas, nos conduce a numerosas aplicaciones prácticas. Las fuentes de campos magnéticos son esencialmente de naturaleza dipolar, teniendo un polo norte y un polo sur magnéticos. La unidad SI para el campo magnético es el Tesla, que se puede ver desde la parte magnética de la ley de fuerza de Lorenz, Magnética = qvB, que está compuesta de (Newton x segundo)/ (Culombio x metro). El Gauss (1 Tesla = 10.000 Gauss) es una unidad de campo magnético más pequeña.

ELECTROSTÁTICA Y ELECTRODINAMICA

ELECTROSTÁTICA
La electrostática es la rama de la Física que analiza los efectos mutuos que se producen entre los cuerpos como consecuencia de su carga eléctrica, es decir, el estudio de las cargas eléctricas en equilibrio. La carga eléctrica es la propiedad de la materia responsable de los fenómenos electrostáticos, cuyos efectos aparecen en forma de atracciones y repulsiones entre los cuerpos que la poseen.

Históricamente, la electrostática fue la rama del electromagnetismo que primero se desarrolló. Con la postulación de la Ley de Coulomb fue descrita y utilizada en experimentos de laboratorio a partir del siglo XVII, y ya en la segunda mitad del siglo XIX las leyes de Maxwell concluyeron definitivamente su estudio y explicación, y permitieron demostrar cómo las leyes de la electrostática y las leyes que gobiernan los fenómenos magnéticos pueden ser analizadas en el mismo marco teórico denominado electromagnetismo.

Benjamín Franklin haciendo un experimento con un rayo, que no es otra cosa que un fenómeno electrostático microscópico.
ELECTRODINÁMICA

Albert Einstein desarrolló la teoría de la relatividad especial merced a un análisis de la electrodinámica. Durante finales del siglo XIX los físicos se percataron de una contradicción entre las leyes aceptadas de la electrodinámica y la mecánica clásica. En particular, las ecuaciones de Maxwell predecían resultados no intuitivos como que la velocidad de la luz es la misma para cualquier observador y que no obedece a la invariancia galileana. Se creía, pues, que las ecuaciones de Maxwell no eran correctas y que las verdaderas ecuaciones del electromagnetismo contenían un término que se correspondería con la influencia del éter lumínico.

Después de que los experimentos no arrojasen ninguna evidencia sobre la existencia del éter, Einstein propuso la revolucionaria idea de que las ecuaciones de la electrodinámica eran correctas y que algunos principios de la mecánica clásica eran inexactos, lo que le llevó a la formulación de la teoría de la relatividad especial.

Unos quince años antes del trabajo de Einstein, Wiechert y más tarde Liénard, buscaron las expresiones de los campos electromagnéticos de cargas en movimiento. Esas expresiones, que incluían el efecto del retardo de la propagación de la luz, se conocen ahora como potenciales de Liénard-Wiechert. Un hecho importante que se desprende del retardo, es que un conjunto de cargas eléctricas en movimiento ya no puede ser descrito de manera exacta mediante ecuaciones que sólo dependa de las velocidades y posiciones de las partículas. En otras palabras, eso implica que el lagrangiano debe contener dependencias de los "grados de libertad" internos del campo.

SÍMBOLOS DE LA ELECTRICIDAD

SIMBOLOGIA ELÉCTRICA


HISTORIA DE LA ELCETRICIDAD

HISTORIA DE LA ELECTRICIDAD

Thales de Miletus (630−550 AC) fue el primero, que cerca del 600 AC, conociera el hecho de que el ámbar, al ser frotado adquiere el poder de atracción sobre algunos objetos.
 Sin embargo fue el filósofo Griego Theophrastus (374−287 AC) el primero, que en un tratado escrito tres Siglos después, estableció que otras sustancias tienen este mismo poder, dejando así constancia del primer estudio científico sobre la electricidad.
 En 1600, la Reina Elizabeth I ordena al Físico Real William Gilbert (1544−1603) estudiar los imanes para mejorar la exactitud de las Brújulas usadas en la navegación, siendo éste trabajo la base principal para la definición de los fundamentos de la Electrostática y Magnetismo.
 Gilbert fue el primero en aplicar el término Electricidad del Griego "electrón" = ámbar.
 Gilbert es la unidad de medida de la fuerza magneto motriz. En 1752, Benjamín Franklin (1706−1790) demostró la naturaleza eléctrica de los rayos. Desarrolló la teoría de que la electricidad es un fluido que existe en la materia y su flujo se debe al exceso o Defecto del mismo en ella. Invento el pararrayos. En 1780 inventa los lentes Bifocales. En 1776, Charles Agustín de Coulomb (1736−1806) inventó la balanza de torsión con la cual, midió con Exactitud la fuerza entre las cargas eléctricas y corroboró que dicha fuerza era proporcional al producto de las cargas individuales e inversamente proporcional al cuadrado de la distancia que las separa. Coulomb es la unidad de medida de Carga eléctrica.

ELECTRICIDAD

ELECTRICIDAD
La palabra electricidad podemos dejar patente que tiene su origen etimológico en el término griego electrón que puede traducirse como “ámbar”. Partiendo del mismo se establece que la persona que acuñó este término fue más concreta mente el científico inglés William Gilbert quien en el siglo XVI habló de “eléctrico” para mencionar los fenómenos de cargas de atracción que descubrieron ya los griegos.
Electricidad
La electricidad es una propiedad física manifestada a través de la atracción o del rechazo que ejercen entre sí las distintas partes de la materia. El origen de esta propiedad se encuentra en la presencia de componentes con carga negativa (denominados electrones) y otros con carga positiva (los protones).
La electricidad, por otra parte, es el nombre que recibe una clase de energía que se basa en dicha propiedad física y que se manifiesta tanto en movimiento (la corriente) como en estado de reposo (la estática). Como fuente energética, la electricidad puede usarse para la iluminación o para producir calor

CUIDADOS CON LA ELECTRICIDAD

CUIDADOS CON LA ELECTRICIDAD 

MAGNITUDES ELECTRICAS


 

                                                      INTENSIDAD
En el latín es donde se encuentra el origen etimológico de la palabra intensidad que es fruto de la suma o unión de tres partículas claramente diferenciadas: el prefijo –in que equivale a “hacia dentro”, el vocablo tensus que es sinónimo de “extendido” y finalmente el sufijo –dad que significa “cualidad”.
Intensidad
Intensidad es el nivel de fuerza con que se expresa una magnitud, una propiedad, un fenómeno, etc. Lo intenso, por lo tanto, suele hacer referencia a lo vehemente o impetuoso. Por ejemplo: “El ciclista mostró una gran intensidad en la última etapa y se hizo con la competición”, “La banda tiene una intensidad especial en vivo”, “Los amores hay que vivir los con intensidad”.
Así, con respecto al aspecto sentimental o emocional es frecuente que se haga uso del término intensidad para referirse a esa fuerza que se tiene en determinados momentos en ese sentido. Un claro ejemplo puede ser el siguiente: “Juan Antonio vivió con tal intensidad su boda que no pudo evitar llorar al finalizar la ceremonia eclesiástica”.
   VOLTAJE
El diccionario de la Real Academia Española (RAE) define al voltaje como la cantidad de voltios que actúan en un aparato o en un sistema eléctrico. De esta forma, el voltaje, que también es conocido como tensión o diferencia de potencial, es la presión que una fuente de suministro de energía eléctrica o fuerza electromotriz ejerce sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado. De esta forma, se establece el flujo de una corriente eléctrica.
Voltaje
A mayor diferencia de potencial que ejerce una fuente de suministro de energía eléctrica, mayor es el voltaje existente en el circuito al que corresponde ese conductor. La diferencia de potencial se mide en voltios (V), al igual que el potencial.
La tensión entre dos puntos de un campo eléctrico es igual al trabajo que realiza dicha unidad de carga positiva para transportarla desde el punto A al punto B. Cabe destacar que la tensión es independiente del camino recorrido por la carga, y depende de forma exclusiva del potencial eléctrico de los puntos A y B en el campo.

                              




QUÉ ES LA RESISTENCIA ELÉCTRICA


Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones. Cualquier dispositivo o consumidor conectado a un circuito eléctrico representa en sí una carga, resistencia u obstáculo para la circulación de la corriente eléctrica.




A.-
 Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia. B.- Electrones fluyendo por un mal conductor. Eléctrico, que ofrece alta resistencia a su paso. En ese caso los electrones chocan unos contra otros al no poder circular libremente y, como consecuencia, generan calor.


Normalmente los electrones tratan de circular por el circuito eléctrico de una forma más o menos organizada, de acuerdo con la resistencia que encuentren a su paso. Mientras menor sea esa resistencia, mayor será el orden existente en el micro mundo de los electrones; pero cuando la resistencia es elevada, comienzan a chocar unos con otros y a liberar energía en forma de calor. Esa situación hace que siempre se eleve algo la temperatura del conductor y que, además, adquiera valores más altos en el punto donde los electrones encuentren una mayor resistencia a su paso.



Potencia eléctrica
La energía eléctrica se transmite por líneas sobre torres, como estas en Brisbane, Australia.
La potencia eléctrica es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un momento determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt).
Cuando una corriente eléctrica fluye en cualquier circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las células fotoeléctricas. Por último, se puede almacenar químicamente en baterías.
La energía consumida por un dispositivo eléctrico se mide en vatios-hora (Wh), o en kilovatios-hora (kWh). Normalmente las empresas que suministran energía eléctrica a la industria y los hogares, en lugar de facturar el consumo en vatios-hora, lo hacen en kilovatios-hora (kWh). La potencia en vatios (W) o kilovatios (kW) de todos los aparatos eléctricos debe figurar junto con la tensión de alimentación en una placa metálica ubicada, generalmente, en la parte trasera de dichos equipos. En los motores, esa placa se halla colocada en uno de sus costados y en el caso de las bombillas de alumbrado el dato viene impreso en el cristal o en su base.

ENERGIA
La energía eléctrica existe libre en la naturaleza de manera aprovechable. El ejemplo más relevante y habitual de esta manifestación son las tormentas eléctricas. La electricidad tampoco tiene una utilidad biológica directa para el ser humano, salvo en aplicaciones muy singulares, como pudiera ser el uso de corrientes en medicina (terapia electro convulsiva), resultando en cambio normalmente desagradable e incluso peligrosa, según las circunstancias. Sin embargo es una de las más utilizadas, una vez aplicada a procesos y aparatos de la más diversa naturaleza, debido fundamentalmente a su limpieza y a la facilidad con la que se la genera, transporta y convierte en otras formas de energía. Para contrarrestar todas estas virtudes hay que reseñar la dificultad que presenta su almacenamiento directo en los aparatos llamados acumuladores.
La generación de energía eléctrica se lleva a cabo mediante técnicas muy diferentes. Las que suministran las mayores cantidades y potencias de electricidad aprovechan un movimiento rotatorio para generar corriente continua en una dinamo o corriente alterna en un alternador. El movimiento rotatorio resulta a su vez de una fuente de energía mecánica directa, como puede ser la corriente de un salto de agua o la producida por el viento, o de un ciclo termodinámico. En este último caso se calienta un fluido, al que se hace recorrer un circuito en el que mueve un motor o una turbina. El calor de este proceso se obtiene mediante la quema de combustibles fósiles, reacciones nucleares y otros procesos.
La generación de energía eléctrica es una actividad humana básica, ya que está directamente relacionada con los requerimientos actuales del hombre. Todas las formas de utilización de las fuentes de energía, tanto las habituales como las denominadas alternativas o no convencionales, agreden en mayor o menor medida el ambiente, siendo de todos modos la energía eléctrica una de las que causan menor impacto.
LEY DE OHM



La ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una ley de la electricidad. Establece que la diferencia de potencial {\displaystyle V}  que aparece entre los extremos de un conductor determinado es proporcional a la intensidad de la corriente {\displaystyle I}  que circula por el citado conductor. Ohm completó la ley introduciendo la noción de resistencia eléctrica {\displaystyle R} ; que es el factor de proporcionalidad que aparece en la relación entre {\displaystyle V}  {\displaystyle I} :

{\displaystyle V=R\cdot I\,}

La fórmula anterior se conoce como Fórmula General de la Ley de Ohms,1 2 y en la misma, {\displaystyle V}  corresponde a la diferencia de potencial, {\displaystyle R}  a la resistencia e {\displaystyle I}  a la intensidad de la corriente. Las unidades de esas tres magnitudes en el sistema internacional de unidades son, respectivamente, voltios (V), ohmios (Ω) y amperios (A).

Otras expresiones alternativas, que se obtienen a partir de la ecuación anterior, son:

{\displaystyle I={\frac {V}{R}}}  válida si 'R' no es nulo

{\displaystyle R={\frac {V}{I}}}  válida si 'I' no es nula

En los circuitos de alterna senoidal, a partir del concepto de impedancia, se ha generalizado esta ley, dando lugar a la llamada ley de Ohm para circuitos recorridos por corriente alterna, que indica:3 {{ecuación| 1+2=4 fasor 2+2=3