lunes, 6 de junio de 2016

MAGNITUDES ELECTRICAS


 

                                                      INTENSIDAD
En el latín es donde se encuentra el origen etimológico de la palabra intensidad que es fruto de la suma o unión de tres partículas claramente diferenciadas: el prefijo –in que equivale a “hacia dentro”, el vocablo tensus que es sinónimo de “extendido” y finalmente el sufijo –dad que significa “cualidad”.
Intensidad
Intensidad es el nivel de fuerza con que se expresa una magnitud, una propiedad, un fenómeno, etc. Lo intenso, por lo tanto, suele hacer referencia a lo vehemente o impetuoso. Por ejemplo: “El ciclista mostró una gran intensidad en la última etapa y se hizo con la competición”, “La banda tiene una intensidad especial en vivo”, “Los amores hay que vivir los con intensidad”.
Así, con respecto al aspecto sentimental o emocional es frecuente que se haga uso del término intensidad para referirse a esa fuerza que se tiene en determinados momentos en ese sentido. Un claro ejemplo puede ser el siguiente: “Juan Antonio vivió con tal intensidad su boda que no pudo evitar llorar al finalizar la ceremonia eclesiástica”.
   VOLTAJE
El diccionario de la Real Academia Española (RAE) define al voltaje como la cantidad de voltios que actúan en un aparato o en un sistema eléctrico. De esta forma, el voltaje, que también es conocido como tensión o diferencia de potencial, es la presión que una fuente de suministro de energía eléctrica o fuerza electromotriz ejerce sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado. De esta forma, se establece el flujo de una corriente eléctrica.
Voltaje
A mayor diferencia de potencial que ejerce una fuente de suministro de energía eléctrica, mayor es el voltaje existente en el circuito al que corresponde ese conductor. La diferencia de potencial se mide en voltios (V), al igual que el potencial.
La tensión entre dos puntos de un campo eléctrico es igual al trabajo que realiza dicha unidad de carga positiva para transportarla desde el punto A al punto B. Cabe destacar que la tensión es independiente del camino recorrido por la carga, y depende de forma exclusiva del potencial eléctrico de los puntos A y B en el campo.

                              




QUÉ ES LA RESISTENCIA ELÉCTRICA


Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones. Cualquier dispositivo o consumidor conectado a un circuito eléctrico representa en sí una carga, resistencia u obstáculo para la circulación de la corriente eléctrica.




A.-
 Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia. B.- Electrones fluyendo por un mal conductor. Eléctrico, que ofrece alta resistencia a su paso. En ese caso los electrones chocan unos contra otros al no poder circular libremente y, como consecuencia, generan calor.


Normalmente los electrones tratan de circular por el circuito eléctrico de una forma más o menos organizada, de acuerdo con la resistencia que encuentren a su paso. Mientras menor sea esa resistencia, mayor será el orden existente en el micro mundo de los electrones; pero cuando la resistencia es elevada, comienzan a chocar unos con otros y a liberar energía en forma de calor. Esa situación hace que siempre se eleve algo la temperatura del conductor y que, además, adquiera valores más altos en el punto donde los electrones encuentren una mayor resistencia a su paso.



Potencia eléctrica
La energía eléctrica se transmite por líneas sobre torres, como estas en Brisbane, Australia.
La potencia eléctrica es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un momento determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt).
Cuando una corriente eléctrica fluye en cualquier circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las células fotoeléctricas. Por último, se puede almacenar químicamente en baterías.
La energía consumida por un dispositivo eléctrico se mide en vatios-hora (Wh), o en kilovatios-hora (kWh). Normalmente las empresas que suministran energía eléctrica a la industria y los hogares, en lugar de facturar el consumo en vatios-hora, lo hacen en kilovatios-hora (kWh). La potencia en vatios (W) o kilovatios (kW) de todos los aparatos eléctricos debe figurar junto con la tensión de alimentación en una placa metálica ubicada, generalmente, en la parte trasera de dichos equipos. En los motores, esa placa se halla colocada en uno de sus costados y en el caso de las bombillas de alumbrado el dato viene impreso en el cristal o en su base.

ENERGIA
La energía eléctrica existe libre en la naturaleza de manera aprovechable. El ejemplo más relevante y habitual de esta manifestación son las tormentas eléctricas. La electricidad tampoco tiene una utilidad biológica directa para el ser humano, salvo en aplicaciones muy singulares, como pudiera ser el uso de corrientes en medicina (terapia electro convulsiva), resultando en cambio normalmente desagradable e incluso peligrosa, según las circunstancias. Sin embargo es una de las más utilizadas, una vez aplicada a procesos y aparatos de la más diversa naturaleza, debido fundamentalmente a su limpieza y a la facilidad con la que se la genera, transporta y convierte en otras formas de energía. Para contrarrestar todas estas virtudes hay que reseñar la dificultad que presenta su almacenamiento directo en los aparatos llamados acumuladores.
La generación de energía eléctrica se lleva a cabo mediante técnicas muy diferentes. Las que suministran las mayores cantidades y potencias de electricidad aprovechan un movimiento rotatorio para generar corriente continua en una dinamo o corriente alterna en un alternador. El movimiento rotatorio resulta a su vez de una fuente de energía mecánica directa, como puede ser la corriente de un salto de agua o la producida por el viento, o de un ciclo termodinámico. En este último caso se calienta un fluido, al que se hace recorrer un circuito en el que mueve un motor o una turbina. El calor de este proceso se obtiene mediante la quema de combustibles fósiles, reacciones nucleares y otros procesos.
La generación de energía eléctrica es una actividad humana básica, ya que está directamente relacionada con los requerimientos actuales del hombre. Todas las formas de utilización de las fuentes de energía, tanto las habituales como las denominadas alternativas o no convencionales, agreden en mayor o menor medida el ambiente, siendo de todos modos la energía eléctrica una de las que causan menor impacto.
LEY DE OHM



La ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una ley de la electricidad. Establece que la diferencia de potencial {\displaystyle V}  que aparece entre los extremos de un conductor determinado es proporcional a la intensidad de la corriente {\displaystyle I}  que circula por el citado conductor. Ohm completó la ley introduciendo la noción de resistencia eléctrica {\displaystyle R} ; que es el factor de proporcionalidad que aparece en la relación entre {\displaystyle V}  {\displaystyle I} :

{\displaystyle V=R\cdot I\,}

La fórmula anterior se conoce como Fórmula General de la Ley de Ohms,1 2 y en la misma, {\displaystyle V}  corresponde a la diferencia de potencial, {\displaystyle R}  a la resistencia e {\displaystyle I}  a la intensidad de la corriente. Las unidades de esas tres magnitudes en el sistema internacional de unidades son, respectivamente, voltios (V), ohmios (Ω) y amperios (A).

Otras expresiones alternativas, que se obtienen a partir de la ecuación anterior, son:

{\displaystyle I={\frac {V}{R}}}  válida si 'R' no es nulo

{\displaystyle R={\frac {V}{I}}}  válida si 'I' no es nula

En los circuitos de alterna senoidal, a partir del concepto de impedancia, se ha generalizado esta ley, dando lugar a la llamada ley de Ohm para circuitos recorridos por corriente alterna, que indica:3 {{ecuación| 1+2=4 fasor 2+2=3

No hay comentarios.:

Publicar un comentario